skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pentz, Maryann"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lighting, as a significant component of indoor environment quality, was found to be a primary contributor to deficient indoor environments in today’s workplace. This resulted from the fact that current guidelines are derived from empirical values and neglect the prevalence of computer-based tasks in current offices. A personal visual comfort model was designed to predict the degree of an individual’s visual comfort, as a way of evaluating the indoor lighting of the environment. Development of the model relied on experimental data, including individual eye pupil sizes, visual sensations, and visual satisfaction in response to various illuminance levels used for tests of six human subjects. The results showed that (1) A personal comfort model was needed, (2) the personal comfort model produced a median accuracy of 0.7086 for visual sensation and 0.65467 for visual satisfaction for all subjects; (3) To develop a prediction model for the sample group, the Support Vector Machine algorithm,, outperformed the Logistic Regression and the Gaussian Naïve Bayes in terms of prediction accuracy. It was concluded that, a personal visual comfort model can use a building’s occupant’s eye pupil size to generate an accurate prediction of that occupant’s visual sensations and visual satisfaction that can, therefore, be applied with lighting control to improve the indoor environment and energy use in that building. 
    more » « less